Weihrauch Degrees, Omniscience Principles and Weak Computability

نویسندگان

  • Vasco Brattka
  • Guido Gherardi
چکیده

In this paper we study a reducibility that has been introduced by Klaus Weihrauch or, more precisely, a natural extension of this reducibility for multi-valued functions on represented spaces. We call the corresponding equivalence classes Weihrauch degrees and we show that the corresponding partial order induces a lower semi-lattice with the disjoint union of multi-valued functions as greatest lower bound operation. We prove that parallelization is a closure operator for this semi-lattice and the parallelized Weihrauch degrees even form a lattice with the product of multi-valued functions as greatest lower bound operation. We show that the Medvedev lattice can be embedded into the parallelized Weihrauch lattice in a natural way, even into the sublattice of total continuous multi-valued functions on Baire space and such that greatest lower bounds and least upper bounds are preserved. As a consequence we obtain that Turing degrees can be embedded into the single-valued part of this sublattice. The importance of Weihrauch degrees is based on the fact that multi-valued functions on represented spaces can be considered as realizers of mathematical theorems in a very natural way and studying the Weihrauch reductions between theorems in this sense means to ask which theorems can be transformed continuously or computably into each other. This allows a new purely topological or computational approach to metamathematics that sheds new light on the nature of theorems. As crucial corner points of this classification scheme we study the limited principle of omniscience LPO, the lesser limited principle of omniscience LLPO and their parallelizations. We recall that the parallelized version of LPO is complete for limit computable functions (which are exactly the effectively Σ 2 –measurable functions in the Borel hierarchy). We prove that parallelized LLPO is equivalent to Weak Kőnig’s Lemma and hence to the Hahn-Banach Theorem in this new and very strong sense. We call a multi-valued function weakly computable if it is reducible to the Weihrauch degree of parallelized LLPO and we present a new proof that the class of weakly computable operations is closed under composition. This proof is based on a computational version of Kleene’s ternary logic. Moreover, we characterize weakly computable operations on computable metric spaces as operations that admit upper semi-computable compact-valued selectors and we prove that any single-valued weakly computable operation is already computable in the ordinary sense. 2000 Mathematics Subject Classification. 03F60,03D30,03B30,03E15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Choice and Boundedness Principles in Computable Analysis

In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or compu...

متن کامل

Weihrauch Degrees of Finding Equilibria in Sequential Games

We consider the degrees of non-computability (Weihrauch degrees) of finding winning strategies (or more generally, Nash equilibria) in infinite sequential games with certain winning sets (or more generally, outcome sets). In particular, we show that as the complexity of the winning sets increases in the difference hierarchy, the complexity of constructing winning strategies increases in the eff...

متن کامل

Strong Reductions between Combinatorial Principles

This paper is a contribution to the growing investigation of strong reducibilities between Π2 statements of second-order arithmetic, viewed as an extension of the traditional analysis of reverse mathematics. We answer several questions of Hirschfeldt and Jockusch [13] about Weihrauch (uniform) and strong computable reductions between various combinatorial principles related to Ramsey’s theorem ...

متن کامل

Reverse Mathematics of Matroids

Matroids generalize the familiar notion of linear dependence from linear algebra. Following a brief discussion of founding work in computability and matroids, we use the techniques of reverse mathematics to determine the logical strength of some basis theorems for matroids and enumerated matroids. Next, using Weihrauch reducibility, we relate the basis results to combinatorial choice principles...

متن کامل

Function Spaces for Second-Order Polynomial Time

In the context of second-order polynomial-time computability, we prove that there is no general function space construction. We proceed to identify restrictions on the domain or the codomain that do provide a function space with polynomial-time function evaluation containing all polynomial-time computable functions of that type. As side results we show that a polynomial-time counterpart to admi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2009